Category Archives: Questionable Research Practices

Francis’s Audit of Multiple-Study Articles in Psychological Science in 2009-2012

Citation: Francis G., (2014). The frequency of excess success for articles
in Psychological Science. Psychon Bull Rev (2014) 21:1180–1187
DOI 10.3758/s13423-014-0601-x

Introduction

The Open Science Collaboration article in Science has over 1,000 articles (OSC, 2015). It showed that attempting to replicate results published in 2008 in three journals, including Psychological Science, produced more failures than successes (37% success rate). It also showed that failures outnumbered successes 3:1 in social psychology. It did not show or explain why most social psychological studies failed to replicate.

Since 2015 numerous explanations have been offered for the discovery that most published results in social psychology cannot be replicated: decline effect (Schooler), regression to the mean (Fiedler), incompetent replicators (Gilbert), sabotaging replication studies (Strack), contextual sensitivity (vanBavel). Although these explanations are different, they share two common elements, (a) they are not supported by evidence, and (b) they are false.

A number of articles have proposed that the low replicability of results in social psychology are caused by questionable research practices (John et al., 2012). Accordingly, social psychologists often investigate small effects in between-subject experiments with small samples that have large sampling error. A low signal to noise ratio (effect size/sampling error) implies that these studies have a low probability of producing a significant result (i.e., low power and high type-II error probability). To boost power, researchers use a number of questionable research practices that inflate effect sizes. Thus, the published results provide the false impression that effect sizes are large and results are replicated, but actual replication attempts show that the effect sizes were inflated. The replicability projected suggested that effect sizes are inflated by 100% (OSC, 2015).

In an important article, Francis (2014) provided clear evidence for the widespread use of questionable research practices for articles published from 2009-2012 (pre crisis) in the journal Psychological Science. However, because this evidence does not fit the narrative that social psychology was a normal and honest science, this article is often omitted from review articles, like Nelson et al’s (2018) ‘Psychology’s Renaissance’ that claims social psychologists never omitted non-significant results from publications (cf. Schimmack, 2019). Omitting disconfirming evidence from literature reviews is just another sign of questionable research practices that priorities self-interest over truth. Given the influence that Annual Review articles hold, many readers maybe unfamiliar with Francis’s important article that shows why replication attempts of articles published in Psychological Science often fail.

Francis (2014) “The frequency of excess success for articles in Psychological Science”

Francis (2014) used a statistical test to examine whether researchers used questionable research practices (QRPs). The test relies on the observation that the success rate (percentage of significant results) should match the mean power of studies in the long run (Brunner & Schimmack, 2019; Ioannidis, J. P. A., & Trikalinos, T. A., 2007; Schimmack, 2012; Sterling et al., 1995). Statistical tests rely on the observed or post-hoc power as an estimate of true power. Thus, mean observed power is an estimate of the expected number of successes that can be compared to the actual success rate in an article.

It has been known for a long time that the actual success rate in psychology articles is surprisingly high (Sterling, 1995). The success rate for multiple-study articles is often 100%. That is, psychologists rarely report studies where they made a prediction and the study returns a non-significant results. Some social psychologists even explicitly stated that it is common practice not to report these ‘uninformative’ studies (cf. Schimmack, 2019).

A success rate of 100% implies that studies required 99.9999% power (power is never 100%) to produce this result. It is unlikely that many studies published in psychological science have the high signal-to-noise ratios to justify these success rates. Indeed, when Francis applied his bias detection method to 44 studies that had sufficient results to use it, he found that 82 % (36 out of 44) of these articles showed positive signs that questionable research practices were used with a 10% error rate. That is, his method could at most produce 5 significant results by chance alone, but he found 36 significant results, indicating the use of questionable research practices. Moreover, this does not mean that the remaining 8 articles did not use questionable research practices. With only four studies, the test has modest power to detect questionable research practices when the bias is relatively small. Thus, the main conclusion is that most if not all multiple-study articles published in Psychological Science used questionable research practices to inflate effect sizes. As these inflated effect sizes cannot be reproduced, the effect sizes in replication studies will be lower and the signal-to-noise ratio will be smaller, producing non-significant results. It was known that this could happen since 1959 (Sterling, 1959). However, the replicability project showed that it does happen (OSC, 2015) and Francis (2014) showed that excessive use of questionable research practices provides a plausible explanation for these replication failures. No review of the replication crisis is complete and honest, without mentioning this fact.

Limitations and Extension

One limitation of Francis’s approach and similar approaches like my incredibility Index (Schimmack, 2012) is that p-values are based on two pieces of information, the effect size and sampling error (signal/noise ratio). This means that these tests can provide evidence for the use of questionable research practices, when the number of studies is large, and the effect size is small. It is well-known that p-values are more informative when they are accompanied by information about effect sizes. That is, it is not only important to know that questionable research practices were used, but also how much these questionable practices inflated effect sizes. Knowledge about the amount of inflation would also make it possible to estimate the true power of studies and use it as a predictor of the success rate in actual replication studies. Jerry Brunner and I have been working on a statistical method that is able to to this, called z-curve, and we validated the method with simulation studies (Brunner & Schimmack, 2019).

I coded the 195 studies in the 44 articles analyzed by Francis and subjected the results to a z-curve analysis. The results are shocking and much worse than the results for the studies in the replicability project that produced an expected replication rate of 61%. In contrast, the expected replication rate for multiple-study articles in Psychological Science is only 16%. Moreover, given the fairly large number of studies, the 95% confidence interval around this estimate is relatively narrow and includes 5% (chance level) and a maximum of 25%.

There is also clear evidence that QRPs were used in many, if not all, articles. Visual inspection shows a steep drop at the level of significance, and the only results that are not significant with p < .05 are results that are marginally significant with p < .10. Thus, the observed discovery rate of 93% is an underestimation and the articles claimed an amazing success rate of 100%.

Correcting for bias, the expected discovery rate is only 6%, which is just shy of 5%, which would imply that all published results are false positives. The upper limit for the 95% confidence interval around this estimate is 14, which would imply that for every published significant result there are 6 studies with non-significant results if file-drawring were the only QRP that was used. Thus, we see not only that most article reported results that were obtained with QRPs, we also see that massive use of QRPs was needed because many studies had very low power to produce significant results without QRPs.

Conclusion

Social psychologists have used QRPs to produce impressive results that suggest all studies that tested a theory confirmed predictions. These results are not real. Like a magic show they give the impression that something amazing happened, when it is all smoke and mirrors. In reality, social psychologists never tested their theories because they simply failed to report results when the data did not support their predictions. This is not science. The 2010s have revealed that social psychological results in journals and text books cannot be trusted and that influential results cannot be replicated when the data are allowed to speak. Thus, for the most part, social psychology has not been an empirical science that used the scientific method to test and refine theories based on empirical evidence. The major discovery in the 2010s was to reveal this fact, and Francis’s analysis provided valuable evidence to reveal this fact. However, most social psychologists preferred to ignore this evidence. As Popper pointed out, this makes them truly ignorant, which he defined as “the unwillingness to acquire knowledge.” Unfortunately, even social psychologists who are trying to improve it wilfully ignore Francis’s evidence that makes replication failures predictable and undermines the value of actual replication studies. Given the extent of QRPs, a more rational approach would be to dismiss all evidence that was published before 2012 and to invest resources in new research with open science practices. Actual replication failures were needed to confirm predictions made by bias tests that old studies cannot be trusted. The next decade should focus on using open science practices to produce robust and replicable findings that can provide the foundation for theories.

When DataColada kissed Fiske’s ass to publish in Annual Review of Psychology

One of the worst articles about the decade of replication failures is the “Psychology’s Renaissance” article by the datacolada team (Leif Nelson, Joseph Simmons, & Uri Simonsohn).

This is not your typical Annual Review article that aims to give a review over developments in the field. it is an opinion piece filled with bold claims that lack empirical evidence.

The worst claim is that p-hacking is so powerful that pretty much every study can be made to work.

Experiments that work are sent to a journal, whereas experiments that fail are sent to the file drawer (Rosenthal 1979). We believe that this “file-drawer explanation” is incorrect. Most failed studies are not missing. They are published in our journals, masquerading as successes.

We can all see that not publishing failed studies is a bit problematic. Even Bem’s famous manual for p-hackers warned that it is unethical to hide contradictory evidence. “The integrity of the scientific enterprise requires the reporting of disconfirming results” (Bem). Thus, the idea that researchers are sitting on a pile of failed studies that they failed to disclose makes psychologists look bad and we can’t have that in Fiske’s Annual Review of Psychology journal. Thus, psychologists must have been doing something that is not dishonest and can be sold as normal science.

“P-hacking is the only honest and practical way to consistently get underpowered studies to be statistically significant. Researchers did not learn from experience to increase their sample sizes precisely because their underpowered studies were not failing.” (p. 515).

This is utter nonsense. First, researchers have file-drawers of studies that did not work. Just ask them and they may tell you that they do.

“We did run multiple studies, some of which did not work, and some of which worked better than others. You may think that not reporting the less successful studies is wrong, but that is how the field works.” (Roy Baumeister, personal email communication)

Leading social psychologists, Gilbert and Wilson provide an even more detailed account of their research practices that produce many non-significant results that are not reported (a.k.a. a file drawer), which has been preserved thanks to Greg Francis.

First, it’s important to be clear about what “publication bias” means. It doesn’t mean that anyone did anything wrong, improper, misleading, unethical, inappropriate, or illegal. Rather it refers to the well known fact that scientists in every field publish studies whose results tell them something interesting about the world, and don’t publish studies whose results tell them nothing. Francis uses sophisticated statistical tools to discover what everyone already knew—and what he could easily have discovered simply by asking us. Yes, of course we ran some studies on “consuming experience” that failed to show interesting effects and are not reported in our JESP paper. Let us be clear: We did not run the same study over and over again until it yielded significant results and then report only the study that “worked.” Doing so would be clearly unethical. Instead, like most researchers who are developing new methods, we did some preliminary studies that used different stimuli and different procedures and that showed no interesting effects. Why didn’t these studies show interesting effects? We’ll never know. Failed studies are often (though not always) inconclusive, which is why they are often (but not always) unpublishable. So yes, we had to mess around for a while to establish a paradigm that was sensitive and powerful enough to observe the effects that we had hypothesized. In one study we might have used foods that didn’t differ sufficiently in quality, in another we might have made the metronome tick too fast for people to chew along. Exactly how good a potato chip should be and exactly how fast a person can chew it are the kinds of mundane things that scientists have to figure out in preliminary testing, and they are the kinds of mundane things that scientists do not normally report in journals (but that they informally share with other scientists who work on similar phenomenon). Looking back at our old data files, it appears that in some cases we went hunting for potentially interesting mediators of our effect (i.e., variables that might make it larger or smaller) and although we replicated the effect, we didn’t succeed in making it larger or smaller. We don’t know why, which is why we don’t describe these blind alleys in our paper. All of this is the hum-drum ordinary stuff of day-to-day science.

Aside from this anecdotal evidence, the datacolada crew actually had access to empirical evidence in an article that they cite, but maybe never read. An important article in the 2010s reported a survey of research practices (John, Loewenstein, & Prelec, 2012). The survey asked about several questionable research practices, including not reporting entire studies that failed to support the main hypothesis.

Not reporting studies that “did not work” was the third most frequently used QRP. Unfortunately, this result contradicts datacolada’s claim that there are no studies in file-drawers and so they ignore this inconvenient empirical fact to tell their fairy tail of honest p-hackers that didn’t know better until 2011 when they published their famous “False Positive Psychology” article.

This is a cute story that isn’t supported by evidence, but that has never stopped psychologists from writing articles that advance their own career. The beauty of review articles is that you don’t even have to phack data. You just pick and choose citations or make claims without evidence. As long as the editor (Fiske) likes what you have to say, it will be published. Welcome to psychology’s renaissance; same bullshit as always.

Statistics Wars: Don’t change alpha. Change the null-hypothesis!

The statistics wars go back all the way to Fisher, Pearson, and Neyman-Pearson(Jr), and there is no end in sight. I have no illusion that I will be able to end these debates, but at least I can offer a fresh perspective. Lately, statisticians and empirical researchers like me who dabble in statistics have been debating whether p-values should be banned and if they are not banned outright whether they should be compared to a criterion value of .05 or .005 or be chosen on an individual basis. Others have advocated the use of Bayes-Factors.

However, most of these proposals have focused on the traditional approach to test the null-hypothesis that the effect size is zero. Cohen (1994) called this the nil-hypothesis to emphasize that this is only one of many ways to specify the hypothesis that is to be rejected in order to provide evidence for a hypothesis.

For example, a nil-hypothesis is that the difference in the average height of men and women is exactly zero). Many statisticians have pointed out that a precise null-hypothesis is often wrong a priori and that little information is provided by rejecting it. The only way to make nil-hypothesis testing meaningful is to think about the nil-hypothesis as a boundary value that distinguishes two opposing hypothesis. One hypothesis is that men are taller than women and the other is that women are taller than men. When data allow rejecting the nil-hypothesis, the direction of the mean difference in the sample makes it possible to reject one of the two directional hypotheses. That is, if the sample mean height of men is higher than the sample mean height of women, the hypothesis that women are taller than men can be rejected.

However, the use of the nil-hypothesis as a boundary value does not solve another problem of nil-hypothesis testing. Namely, specifying the null-hypothesis as a point value makes it impossible to find evidence for it. That is, we could never show that men and women have the same height or the same intelligence or the same life-satisfaction. The reason is that the population difference will always be different from zero, even if this difference is too small to be practically meaningful. A related problem is that rejecting the nil-hypothesis provides no information about effect sizes. A significant result can be obtained with a large effect size and with a small effect size.

In conclusion, nil-hypothesis testing has a number of problems, and many criticism of null-hypothesis testing are really criticism of nil-hypothesis testing. A simple solution to the problem of nil-hypothesis testing is to change the null-hypothesis by specifying a minimal effect size that makes a finding theoretically or practically useful. Although this effect size can vary from research question to research question, Cohen’s criteria for standardized effect sizes can give some guidance about reasonable values for a minimal effect size. Using the example of mean differences, Cohen considered an effect size of d = .2 small, but meaningful. So, it makes sense to set a criterion for a minimum effect size somewhere between 0 and .2, and d = .1 seems a reasonable value.

We can even apply this criterion retrospectively to published studies with some interesting implications for the interpretation of published results. Shifting the null-hypothesis from d = 0 to d < abs(.1), we are essentially raising the criterion value that a test statistic has to meet in order to be significant. Let me illustrate this first with a simple one-sample t-test with N = 100.

Conveniently, the sampling error for N = 100 is 1/sqrt(100) = .1. To achieve significance with alpha = .05 (two-tailed) and H0:d = 0, the test statistic has to be greater than t.crit = 1.98. However, if we change H0 to d > abs(.1), the t-distribution is now centered at the t-value that is expected for an effect size of d = .1. The criterion value to get significance is now t.crit = 3.01. Thus, some published results that were able to reject the nil-hypothesis would be non-significant when the null-hypothesis specifies a range of values between d = -.1 to .1.

If the null-hypothesis is specified in terms of standardized effect sizes, the critical values vary as a function of sample size. For example, with N = 10 the critical t-value is 2.67, with N = 100 it is 3.01, and with N = 1,000 it is 5.14. An alternative approach is to specify H0 in terms of a fixed test statistic which implies different effect sizes for the boundary value. For example, with t = 2.5, the effect sizes would be d = .06 with N = 10, d = .05 with N = 100, and d = .02 with N = 1000. This makes sense because researchers should use larger samples to test weaker effects. The example also shows that a t-value of 2.5 specifies a very narrow range of values around zero. However, the example was based on one-sample t-tests. For the typical comparison of two groups, a criterion value of 2.5 corresponds to an effect size of d = .1 with N = 100. So, while t = 2.5 is arbitrary, it is a meaningful value to test for statistical significance. With N = 100, t(98) = 2.5 corresponds to an alpha criterion of .014, which is a bit more stringent than .05, but not as strict as a criterion value of .005. With N = 100, alpha = .005 corresponds to a criterion value of t.crit = 2.87, which implies a boundary value of d = .17.

In conclusion, statistical significance depends on the specification of the null-hypothesis. While it is common to specify the null-hypothesis as an effect size of zero, this is neither necessary, nor ideal. An alternative approach is to (re)specify the null-hypothesis in terms of a minimum effect size that makes a finding theoretically interesting or practically important. If the population effect size is below this value, the results could also be used to show that a hypothesis is false. Examination of various effect sizes shows that criterion values in the range between 2 and 3 provide can be used to define reasonable boundary values that vary around a value of d = .1

The problem with t-distributions is that they differ as a function of the degrees of freedom. To create a common metric it is possible to convert t-values into p-values and then to convert the p-values into z-scores. A z-score of 2.5 corresponds to a p-value of .01 (exact .0124) and an effect size of d = .13 with N = 100 in a between-subject design. This seems to be a reasonable criterion value to evaluate statistical significance when the null-hypothesis is defined as a range of smallish values around zero and alpha is .05.

Shifting the significance criterion in this way can dramatically change the evaluation of published results, especially results that are just significant, p < .05 & p > .01. There have been concerns that many of these results have been obtained with questionable research practices that were used to reject the nil-hypothesis. However, these results would not be strong enough to reject the modified hypothesis that the population effect size exceeds a minimum value of theoretical or practical significance. Thus, no debates about the use of questionable research practices are needed. There is also no need to reduce the type-I error rate at the expense of increasing the type-II error rate. It can be simply noted that the evidence is insufficient to reject the hypothesis that the effect size is greater than zero but too small to be important. This would shift any debates towards discussion about effect sizes and proponents of theories would have to make clear which effect sizes they consider to be theoretically important. I believe that this would be more productive than quibbling over alpha levels.

To demonstrate the implications of redefining the null-hypothesis, I use the results of the replicability project (Open Science Collaboration, 2015). The first z-curve shows the traditional analysis for the nil-hypothesis and alpha = .05, which has z = 1.96 as the criterion value for statistical significance (red vertical line).

Figure 1 shows that 86 out of 90 studies reported a test-statistic that exceeded the criterion value of 1.96 for H0:d = 0, alpha = .05 (two-tailed). The other four studies met the criterion for marginal significance (alpha = .10, two-tailed or .05 one-tailed). The figure also shows that the distribution of observed z-scores is not consistent with sampling error. The steep drop at z = 1.96 is inconsistent with random sampling error. A comparison of the observed discovery rate (86/90, 96%) and the expected discovery rate 43% shows evidence that the published results are selected from a larger set of studies/tests with non-significant results. Even the upper limit of the confidence interval around this estimate (71%) is well below the observed discovery rate, showing evidence of publication bias. Z-curve estimates that only 60% of the published results would reproduce a significant result in an actual replication attempt. The actual success rate for these studies was 39%.

Results look different when the null-hypothesis is changed to correspond to a range of effect sizes around zero that correspond to a criterion value of z = 2.5. Along with shifting the significance criterion, z-curve is also only fitted to studies that produced z-scores greater than 2.5. As questionable research practices have a particularly strong effect on the distribution of just significant results, the new estimates are less influenced by these practices.

Figure 2 shows the results. Most important, the observed discovery rate dropped from 96% to 61%, indicating that many of the original results provided just enough evidence to reject the nil-hypothesis, but not enough evidence to rule out even small effect sizes. The observed discovery rate is also more in line with the expected discovery rate. Thus, some of the missing non-significant results may have been published as just significant results. This is also implied by the greater frequency of results with z-scores between 2 and 2.5 than the model predicts (grey curve). However, the expected replication rate of 63% is still much higher than the actual replication rate with a criterion value of 2.5 (33%). Thus, other factors may contribute to the low success rate in the actual replication studies of the replicability project.

Conclusion

In conclusion, statisticians have been arguing about p-values, significance levels, and Bayes-Factors. Proponents of Bayes-Factors have argued that their approach is supreme because Bayes-Factors can provide evidence for the null-hypothesis. I argue that this is wrong because it is theoretically impossible to demonstrate that a population effect size is exactly zero or any other specific value. A better solution is to specify the null-hypothesis as a range of values that are too small to be meaningful. This makes it theoretically possible to demonstrate that a population effect size is above or below the boundary value. This approach can also be applied retrospectively to published studies. I illustrate this by defining the null-hypothesis as the region of effect sizes that is defined by the effect size that corresponds to a z-score of 2.5. While a z-score of 2.5 corresponds to p = .01 (two-tailed) for the nil-hypothesis, I use this criterion value to maintain an error rate of 5% and to change the null-hypothesis to a range of values around zero that becomes smaller as sample sizes increase.

As p-hacking is often used to just reject the nil-hypothesis, changing the null-hypothesis to a range of values around zero makes many ‘significant’ results non-significant. That is, the evidence is too weak to exclude even trivial effect sizes. This does not mean that the hypothesis is wrong or that original authors did p-hack their data. However, it does mean that they can no longer point to their original results as empirical evidence. Rather they have to conduct new studies to demonstrate with larger samples that they can reject the new null-hypothesis that the predicted effect meets some minimal standard of practical or theoretical significance. With a clear criterion value for significance, authors also risk to obtain evidence that positively contradicts their predictions. Thus, the biggest improvement that arises form rethinking null-hypothesis testing is that authors have to specify effect sizes a priori and that that studies can provide evidence for and against a zero. Thus, changing the nil-hypothesis to a null-hypothesis with a non-null value makes it possible to provide evidence for or against a theory. In contrast, computing Bayes-Factors in favor of the nil-hypothesis fails to achieve this goal because the nil-hypothesis is always wrong, the real question is only how wrong.

The Demise of the Solo Experiment

Wegner’s article “The Premature Demise of the Solo Experiment” in PSPB (1992) is an interesting document for meta-psychologists. It provides some insight into the thinking of leading social psychologists at the time; not only the author, but reviewers and the editor who found this article worthy of publishing, and numerous colleagues who emailed Wegner with approving comments.

The article starts with the observation that in the 1990s social psychology journals increasingly demanded that articles contain more than one study. Wegner thinks that the preference of multiple-study articles is a bias rather than a preference in favour of stronger evidence.

it has become evident that a tremendous bias against the “solo” experiment exists that guides both editors and reviewers” (p. 504).

The idea of bias is based on the assumption that rejection a null-hypothesis with a long-run error-probability of 5% is good enough to publish exciting new ideas and give birth to wonderful novel theories. Demanding even just one replication of this finding would create a lot more burden without any novel insights just to lower this probability to 0.25%.

But let us just think a moment about the demise of the solo experiment. Here we have a case in which skepticism has so overcome the love of ideas that we seem to have squared the probability of error we are willing to allow. Once, p < .05 was enough. Now, however, we must prove things twice. The multiple experiment ethic has surreptitiously changed alpha to .0025 or below.

That’s right. The move from solo-experiment to multiple-study articles shifted the type-I error probability. Even a pair of studies reduced the type-I error probability more than the highly cited and controversial call to move alpha from .05 to .005. A pair of studies with p < .05 reduces the .005 probability by 50%!

Wegner also explains why journals started demanding multiple studies.

After all, the statistical reasons for multiple experiments are obvious-what better protection of the truth than that each article contain its own replication? (p. 505)

Thus, concerns about replicabilty in social psychology were prominent in the early 1990s, twenty years before the replication crisis. And demanding replication studies was considered to be a solution to this problem. If researchers were able to replicate their findings, ideally with different methods, stimuli, and dependent variables, the results are robust and generalizable. So much for the claim that psychologists did not value or conduct replication studies before the open science movement was born in the early 2010.

Wegner also reports about his experience with attempting to replicate his perfectly good first study.

Sometimes it works wonderfully….more often than not, however, we find the second
experiment is harder to do than the first
Even if we do the exact same experiment again” (p. 506).

He even cheerfully acknowledge that the first results are difficult to replicate because the first results were obtained with some good fortune.

Doing it again, we will be less likely to find the same thing even if it is true, because the
error variance regresses our effects to the mean. So we must add more subjects right off the bat. The joy of discovery we felt on bumbling into the first study is soon replaced by the strain of collecting an all new and expanded set of data to fend off the pointers
[pointers = method-terrorists]” (p. 506).

Wegner even thinks that publishing these replication studies is pointless because readers expect the replication study to work. Sure, if the first study worked, so will the second.

This is something of a nuisance in light of the reception that our second experiment will likely get Readers who see us replicate our own findings roll their eyes and say “Sure,” and we wonder why we’ve even gone to the trouble.

However, he fails to examine more carefully why a successful replication study receives only a shoulder-shrug from readers. After all, his own experience was that it was quite difficult to get these replication studies to work. Doesn’t this mean readers should be at the edge of their seats and wonder whether the original result was a false positive or whether it can actually be replicated? Isn’t the second study the real confirmatory test where the rubber hits the road? Insiders of course know that this is not the case. The second study works because it would not have been included in the multiple-study article if it hadn’t worked. That is after all how the field operated. Everybody had the same problems to get studies to work that Wegner describes, but many found a way to get enough studies to work to meet the demands of the editor. The number of studies was just a test of the persistence of a researcher, not a test of a theory. And that is what Wegner rightfully criticized. What is the point of producing a set of studies with p < .05, if more studies do not strengthen the evidence for a claim. We might as well publish a single finding and then move on to find more interesting ideas and publish them with p-values less than .05. Even 9 studies with p < .05 don’t mean that people can foresee the future (Bem, 2011), but it is surely an interesting idea.

Wegner also comments on the nature of replication studies that are now known as conceptual replication studies. The justification for conceptual replication studies is that they address limitations that are unavoidable in a single study. For example, including a manipulation check may introduce biases, but without one, it is not clear whether a manipulation worked. So, ideally the effect could be demonstrated with and without a manipulation check. However, this is not how conceptual replication studies are conducted.

We must engage in a very delicate “tuning” process to dial in a second experiment that is both sufficiently distant from and sufficiently similar to the original. This tuning requires a whole set of considerations and skills that have nothing to do with conducting an experiment. We are not trained in multi experiment design, only experimental design, and this enterprise is therefore largely one of imitation, inspiration, and luck.

So, to replicate original results that were obtained with a healthy dose of luck, more luck is needed in finding a condition that works, or simply to try often enough until luck strikes again.

Given the negative attitude towards rigor, Wegner and colleagues also used a number of tricks to make replication studies work.

Some of us use tricks to disguise our solos. We run “two experiments” in the same session with the same subjects and write them up separately. Or we run what should rightfully be one experiment as several parts, analyzing each separately and writing it up in bite-sized pieces as a multi experiment Many times, we even hobble the first experiment as a way of making sure there will be something useful to do when we run another.” (p. 506).

If you think this sounds like some charlatans who enjoy pretending to be scientists, your impression is rather accurate because the past decade has shown that many of these internal replications in multiple study articles were obtained with tricks and provide no empirical test of empirical hypotheses; p-values are just for show so that it looks like science, but it isn’t.

My own views on this issue are that the multiple study format was a bad fix for a real problem. The real problem was that it was all to easy to get p < .05 in a single study to make grand claims about the causes of human behavior. Multiple-study articles didn’t solve this problem because researchers found ways to get significant results again and again even when their claims were false.

The failure of multiple-study articles to fix psychology has some interesting lessons for the current attempts to improve psychology. Badges for data sharing and preregistration will not improve psychology, if they are being gamed like psychologists gamed the multiple-study format. Ultimately, science can only advance if results are reported honestly and if results are finally able to falsify theoretical predictions. Psychology will only become a science when brilliant novel ideas can be proven false and scientific rigor is prized as much as the creation of interesting ideas. Coming up with interesting ideas is philosophy. Psychology emerged as a distinct discipline in order to subject those theories to empirical tests. After a century of pretending to do so, it is high time to do so for real.