Why Post-Hoc Power is Often Misleading — and What to Do Instead

This is another blog post about post-hoc power. It was created by ChatGPT after a discussion with ChatGPT about post-hoc power. You can find the longer discussion at the end of the blog post.

🔍 Introduction

You finish your study, run the stats, and the p-value is… not significant. What next?

Maybe you ask, “Did I just not have enough power to detect an effect?”
So you calculate post-hoc power — also called observed power — to figure out whether your study was doomed from the start.

But here’s the problem:
Post-hoc power doesn’t tell you what you think it does.

This post walks through why that’s the case — and what to do instead.


⚡ What Is Post-Hoc (Observed) Power?

Post-hoc power is a calculation of statistical power after your study is complete, using the effect size you just observed.

It answers the question:

“If the true effect size were exactly what I observed, how likely was I to find a significant result?”

It seems intuitive — but it’s built on shaky ground.


🚨 Why Post-Hoc Power Is Misleading

The main issue is circular logic.

Post-hoc power is based on your observed effect size. But in any given study, your observed effect size includes sampling error — sometimes wildly so, especially with small samples.

So if you got a small, non-significant effect, post-hoc power will always be low — but that doesn’t mean your study couldn’t detect a meaningful effect. It just means it didn’t, and now you’re using that fact to “prove” it couldn’t.

👉 In essence, post-hoc power just repackages your p-value. It doesn’t add new information.


🤔 But What If I Want to Know About Power?

Here’s where things get interesting.

Power analysis is still important — but it needs to be handled differently. The key distinction is between hypothetical power and observed power:

Type of PowerBased onWhen UsedPurpose
HypotheticalExpected (e.g., theoretical or meta-analytic) effect sizeBefore studyTo design the study
ObservedEffect size from current dataAfter studyOften (wrongly) used to explain significance

But you can do something more useful with observed data…


✅ A Better Way: Confidence Intervals for Power

Rather than calculating a single post-hoc power number, calculate a confidence interval for the effect size, and then use that to compute a range of plausible power values.

Example:
Let’s say you observed an effect size of 0.3, with a 95% CI of [0.05, 0.55].

You can compute:

  • Power if the true effect is 0.05 (low power)
  • Power if the true effect is 0.55 (high power)

Now you can say:

“If the true effect lies within our 95% CI, then the power of our study ranged from 12% to 88%.”

That’s honest. It tells you what your data can say — and what they can’t.


🧪 When Are Power Confidence Intervals Informative?

In small studies, the confidence interval for the effect size (and thus the power) will be wide — too wide to draw firm conclusions.

But if you base your effect size estimate on:

  • a large study, or
  • a meta-analysis,

your confidence interval can be narrow enough that the corresponding power range is actually informative.

✔️ Bottom line: Confidence intervals make power analysis meaningful — but only when your effect size estimate is precise.


💡 Final Thought: Use Power Thoughtfully

If you didn’t find a significant result, it’s tempting to reach for post-hoc power to explain it away.

But instead of asking, “Was my study underpowered?” try asking:

  • “What effect sizes are consistent with my data?”
  • “How much power would I have had for those?”
  • “What sample size would I need to detect effects in that range reliably?”

These are the questions that lead to better science — and more replicable results.


🛠️ TL;DR

  • ❌ Post-hoc power (observed power) is often misleading.
  • 🔁 It restates your p-value using your observed effect size.
  • ✅ Better: Use the 95% CI of your effect size to calculate a range of power estimates.
  • 📏 If your effect size estimate is precise (e.g., from a large or meta-analytic study), this range becomes actionable.

Leave a Reply