Tag Archives: scientific integrity

Dr. R’s comment on the Official Statement by the Board of the German Psychological Association (DGPs) about the Results of the OSF-Reproducibility Project published in Science.

Thanks to social media, geography is no longer a barrier for scientific discourse. However, language is still a barrier. Fortunately, I understand German and I can respond to the official statement of the board of the German Psychological Association (DGPs), which was posted on the DGPs website (in German).

BACKGROUND

On September 1, 2015, Prof. Dr. Andrea Abele-Brehm, Prof. Dr. Mario Gollwitzer, and Prof. Dr. Fritz Strack published an official response to the results of the OSF-Replication Project – Psychology (in German) that was distributed to public media in order to correct potentially negative impressions about psychology as a science.

Numerous members of DGPs felt that this official statement did not express their views and noticed that members were not consulted about the official response of their organization. In response to this criticism, DGfP opened a moderated discussion page, where members could post their personal views (mostly in German).

On October 6, 2015, the board closed the discussion page and posted some final words (Schlussbeitrag). In this blog, I provide a critical commentary on these final words.

BOARD’S RESPONSE TO COMMENTS

The board members provide a summary of the core insights and arguments of the discussion from their (personal/official) perspective.

„Wir möchten nun die aus unserer Sicht zentralen Erkenntnisse und Argumente der unterschiedlichen Forumsbeiträge im Folgenden zusammenfassen und deutlich machen, welche vorläufigen Erkenntnisse wir im Vorstand aus ihnen ziehen.“

1. 68% success rate?

The first official statement suggested that the replication project showed that 68% of studies. This number is based on significance in a meta-analysis of the original and replication study. Critics pointed out that this approach is problematic because the replication project showed clearly that the original effect sizes were inflated (on average by 100%). Thus, the meta-analysis is biased and the 68% number is inflated.

In response to this criticism, the DGPs board states that “68% is the maximum [größtmöglich] optimistic estimate.” I think the term “biased and statistically flawed estimate” is a more accurate description of this estimate.   It is common practice to consider fail-safe-N or to correct meta-analysis for publication bias. When there is clear evidence of bias, it is unscientific to report the biased estimate. This would be like saying that the maximum optimistic estimate of global warming is that global warming does not exist. This is probably a true statement about the most optimistic estimate, but not a scientific estimate of the actual global warming that has been taking place. There is no place for optimism in science. Optimism is a bias and the aim of science is to remove bias. If DGPs wants to represent scientific psychology, the board should post what they consider the most accurate estimate of replicability in the OSF-project.

2. The widely cited 36% estimate is negative.

The board members then justify the publication of the maximally optimistic estimate as a strategy to counteract negative perceptions of psychology as a science in response to the finding that only 36% of results were replicated. The board members felt that these negative responses misrepresent the OSF-project and psychology as a scientific discipline.

„Dies wird weder dem Projekt der Open Science Collaboration noch unserer Disziplin insgesamt gerecht. Wir sollten jedoch bei der konstruktiven Bewältigung der Krise Vorreiter innerhalb der betroffenen Wissenschaften sein.“

However, reporting the dismal 36% replication rate of the OSF-replication project is not a criticism of the OSF-project. Rather, it assumes that the OSF-replication project was a rigorous and successful attempt to provide an estimate of the typical replicability of results published in top psychology journals. The outcome could have been 70% or 35%. The quality of the project does not depend on the result. The result is also not a negatively biased perception of psychology as a science. It is an objective scientific estimate of the probability that a reported significant result in a journal would produce a significant result again in a replication study.   Whether 36% is acceptable or not can be debated, but it seems problematic to post a maximally optimistic estimate to counteract negative implications of an objective estimate.

3. Is 36% replicability good or bad?

Next, the board ponders the implications of the 36% success rate. “How should we evaluate this number?” The board members do not know.  According to their official conclusion, this question is complex as divergent contributions on the discussion page suggest.

„Im Science-Artikel wurde die relative Häufigkeit der in den Replikationsstudien statistisch bedeutsamen Effekte mit 36% angegeben. Wie ist diese Zahl zu bewerten? Wie komplex die Antwort auf diese Frage ist, machen die Forumsbeiträge von Roland Deutsch, Klaus Fiedler, Moritz Heene (s.a. Heene & Schimmack) und Frank Renkewitz deutlich.“

To help the board members to understand the number, I can give a brief explanation of replicability. Although there are several ways to define replicability, one plausible definition of replicability is to equate it with statistical power. Statistical power is the probability that a study will produce a significant result. A study with 80% power has an 80% probability to produce a significant result. For a set of 100 studies, one would expect roughly 80 significant results and 20 non-significant results. For 100 studies with 36% power, one would expect roughly 36 significant results and 64 non-significant results. If researchers would publish all studies, the percentage of published significant results would provide an unbiased estimate of the typical power of studies.   However, it is well known that significant results are more likely to be written up, submitted for publication, and accepted for publication. These reporting biases explain why psychology journals report over 90% significant results, although the actual power of studies is less than 90%.

In 1962, Jacob Cohen provided the first attempt to estimate replicability of psychological results. His analysis suggested that psychological studies have approximately 50% power. He suggested that psychologists should increase power to 80% to provide robust evidence for effects and to avoid wasting resources on studies that cannot detect small, but practically important effects. For the next 50 years, psychologists have ignored Cohen’s warning that most studies are underpowered, despite repeated reminders that there are no signs of improvement, including reminders by prominent German psychologists like Gerg Giegerenzer, director of a Max Planck Institute (Sedlmeier & Giegerenzer, 1989; Maxwell, 2004; Schimmack, 2012).

The 36% success rate for an unbiased set of 100 replication studies, suggest that the actual power of published studies in psychology journals is 36%.  The power of all studies conducted is even lower because the p < .05 selection criterion favors studies with higher power.  Does the board think 36% power is an acceptable amount of power?

4. Psychologists should improve replicability in the future

On a positive note, the board members suggest that, after careful deliberation, psychologists need to improve replicability so that it can be demonstrated in a few years that replicability has increased.

„Wir müssen nach sorgfältiger Diskussion unter unseren Mitgliedern Maßnahmen ergreifen (bei Zeitschriften, in den Instituten, bei Förderorganisationen, etc.), die die Replikationsquote im temporalen Vergleich erhöhen können.“

The board members do not mention a simple solution to the replicabilty problem that was advocated over 50 years ago by Jacob Cohen. To increase replicability, psychologists have to think about the strength of the effects that they are investigating and they have to conduct studies that have a realistic chance to distinguish these effects from variation due to random error.   This often means investing more resources (larger samples, repeated trials, etc.) in a single study.   Unfortunately, the leaders of German psychologists appear to be unaware of this important and simple solution to the replication crisis. They neither mention power as a cause of the problem, nor do they recommend increasing power to increase replicability in the future.

5. Do the Results Reveal Fraud?

The DGPs board members then discuss the possibility that the OSF-reproducibilty results reveal fraud, like the fraud committed by Stapel. The board points out that the OSF-results do not imply that psychologists commit fraud because failed replications can occur for various reasons.

„Viele Medien (und auch einige Kolleginnen und Kollegen aus unserem Fach) nennen die Befunde der Science-Studie im gleichen Atemzug mit den Betrugsskandalen, die unser Fach in den letzten Jahren erschüttert haben. Diese Assoziation ist unserer Meinung nach problematisch: sie suggeriert, die geringe Replikationsrate sei auf methodisch fragwürdiges Verhalten der Autor(inn)en der Originalstudien zurückzuführen.“

It is true that the OSF-results do not reveal fraud. However, the board members confuse fraud with questionable research practices. Fraud is defined as fabricating data that were never collected. Only one of the 100 studies in the OSF-replication project (by Jens Förster, a former student of Fritz Strack, one of the board members) is currently being investigated for fraud by the University of Amsterdam.  Despite very strong results in the original study, it failed to replicate.

The more relevant question is how much questionable research practices contributed to the results. Questionable research practices are practices where data are being collected, but statistical results are only being reported if they produce a significant result (studies, conditions, dependent variables, data points that do not produce significant results are excluded from the results that are being submitted for publication. It has been known for over 50 years that these practices produce a discrepancy between the actual power of studies and the rate of significant results that are published in psychology journals (Sterling, 1959).

Recent statistical developments have made it possible to estimate the true power of studies after correcting for publication bias.   Based on these calculations, the true power of the original studies in the OSF-project was only 50%.   Thus a large portion of the discrepancy between nearly 100% reported significant results and a replication success rate of 36% is explained by publication bias (see R-Index blogs for social psychology and cognitive psychology).

Other factors may contribute to the discrepancy between the statistical prediction that the replication success rate would be 50% and the actual success rate of 36%. Nevertheless, the lion share of the discrepancy can be explained by the questionable practice to report only evidence that supports a hypothesis that a researcher wants to support. This motivated bias undermines the very foundations of science. Unfortunately, the board ignores this implication of the OSF results.

6. What can we do?

The board members have no answer to this important question. In the past four years, numerous articles have been published that have made suggestions how psychology can improve its credibility as a science. Yet, the DPfP board seems to be unaware of these suggestions or unable to comment on these proposals.

„Damit wären wir bei der Frage, die uns als Fachgesellschaft am stärksten beschäftigt und weiter beschäftigen wird. Zum einen brauchen wir eine sorgfältige Selbstreflexion über die Bedeutung von Replikationen in unserem Fach, über die Bedeutung der neuesten Science-Studie sowie der weiteren, zurzeit noch im Druck oder in der Phase der Auswertung befindlichen Projekte des Center for Open Science (wie etwa die Many Labs-Studien) und über die Grenzen unserer Methoden und Paradigmen“

The time for more discussion has passed. After 50 years of ignoring Jacob Cohen’s recommendation to increase statistical power it is time for action. If psychologists are serious about replicability, they have to increase the power of their studies.

The board then discusses the possibility of measuring and publishing replication rates at the level of departments or individual scientists. They are not in favor of such initiatives, but they provide no argument for their position.

„Datenbanken über erfolgreiche und gescheiterte Replikationen lassen sich natürlich auch auf der Ebene von Instituten oder sogar Personen auswerten (wer hat die höchste Replikationsrate, wer die niedrigste?). Sinnvoller als solche Auswertungen sind Initiativen, wie sie zurzeit (unter anderem) an der LMU an der LMU München implementiert wurden (siehe den Beitrag von Schönbrodt und Kollegen).“

The question is why replicability should not be measured and used to evaluate researchers. If the board really valued replicability and wanted to increase replicability in a few years, wouldn’t it be helpful to have a measure of replicability and to reward departments or researchers who invest more resources in high powered studies that can produce significant results without the need to hide disconfirming evidence in file-drawers?   A measure of replicability is also needed because current quantitative measures of scientific success are one of the reasons for the replicability crisis. The most successful researchers are those who publish the most significant results, no matter how these results were obtained (with the exception of fraud). To change this unscientific practice of significance chasing, it is necessary to have an alternative indicator of scientific quality that reflects how significant results were obtained.

Conclusion

The board makes some vague concluding remarks that are not worthwhile repeating here. So let me conclude with my own remarks.

The response of the DGPs board is superficial and does not engage with the actual arguments that were exchanged on the discussion page. Moreover, it ignores some solid scientific insights into the causes of the replicability crisis and it makes no concrete suggestions how German psychologists should change their behaviors to improve the credibility of psychology as a science. Not once do they point out that the results of the OSF-project were predictable based on the well-known fact that psychological studies are underpowered and that failed studies are hidden in file-drawers.

I received my education in Germany all the way to the Ph.D at the Free University in Berlin. I had several important professors and mentors that educated me about philosophy of science and research methods (Rainer Reisenzein, Hubert Feger, Hans Westmeyer, Wolfgang Schönpflug). I was a member of DGPs for many years. I do not believe that the opinion of the board members represent a general consensus among German psychologists. I hope that many German psychologists recognize the importance of replicability and are motivated to make changes to the way psychologists conduct research.  As I am no longer a member of DGfP, I have no direct influence on it, but I hope that the next election will elect a candidate that will promote open science, transparency, and above all scientific integrity.

Questionable Research Practices: Definition, Detection, and Recommendations for Better Practices

How Power Analysis Could Have Prevented the Sad Story of Dr. Förster

[further information can be found in a follow up blog]

Background

In 2011, Dr. Förster published an article in Journal of Experimental Psychology: General. The article reported 12 studies and each study reported several hypothesis tests. The abstract reports that “In all experiments, global/local processing in 1 modality shifted to global/local processing in the other modality”.

For a while this article was just another article that reported a large number of studies that all worked and neither reviewers nor the editor who accepted the manuscript for publication found anything wrong with the reported results.

In 2012, an anonymous letter voiced suspicion that Jens Forster violated rules of scientific misconduct. The allegation led to an investigation, but as of today (January 1, 2015) there is no satisfactory account of what happened. Jens Förster maintains that he is innocent (5b. Brief von Jens Förster vom 10. September 2014) and blames the accusations about scientific misconduct on a climate of hypervigilance after the discovery of scientific misconduct by another social psychologist.

The Accusation

The accusation is based on an unusual statistical pattern in three publications. The 3 articles reported 40 experiments with 2284 participants, that is an average sample size of N = 57 participants in each experiment. The 40 experiments all had a between-subject design with three groups: one group received a manipulation design to increase scores on the dependent variable. A second group received the opposite manipulation to decrease scores on the dependent variable. And a third group served as a control condition with the expectation that the average of the group would fall in the middle of the two other groups. To demonstrate that both manipulations have an effect, both experimental groups have to show significant differences from the control group.

The accuser noticed that the reported means were unusually close to a linear trend. This means that the two experimental conditions showed markedly symmetrical deviations from the control group. For example, if one manipulation increased scores on the dependent variables by half a standard deviation (d = +.5), the other manipulation decreased scores on the dependent variable by half a standard deviation (d = -.5). Such a symmetrical pattern can be expected when the two manipulations are equally strong AND WHEN SAMPLE SIZES ARE LARGE ENOUGH TO MINIMIZE RANDOM SAMPLING ERROR. However, the sample sizes were small (n = 20 per condition, N = 60 per study). These sample sizes are not unusual and social psychologists often use n = 20 per condition to plan studies. However, these sample sizes have low power to produce consistent results across a large number of studies.

The accuser computed the statistical probability of obtaining the reported linear trend. The probability of obtaining the picture-perfect pattern of means by chance alone was incredibly small.

Based on this finding, the Dutch National Board for Research Integrity (LOWI) started an investigation of the causes for this unlikely finding. An English translation of the final report was published on retraction watch. An important question was whether the reported results could have been obtained by means of questionable research practices or whether the statistical pattern can only be explained by data manipulation. The English translation of the final report includes two relevant passages.

According to one statistical expert “QRP cannot be excluded, which in the opinion of the expert is a common, if not “prevalent” practice, in this field of science.” This would mean that Dr. Förster acted in accordance with scientific practices and that his behavior would not constitute scientific misconduct.

In response to this assessment the Complainant “extensively counters the expert’s claim that the unlikely patterns in the experiments can be explained by QRP.” This led to the decision that scientific misconduct occurred.

Four QRPs were considered.

  1. Improper rounding of p-values. This QRP can only be used rarely when p-values happen to be close to .05. It is correct that this QRP cannot produce highly unusual patterns in a series of replication studies. It can also be easily checked by computing exact p-values from reported test statistics.
  2. Selecting dependent variables from a set of dependent variables. The articles in question reported several experiments that used the same dependent variable. Thus, this QRP cannot explain the unusual pattern in the data.
  3. Collecting additional research data after an initial research finding revealed a non-significant result. This description of an QRP is ambiguous. Presumably it refers to optional stopping. That is, when the data trend in the right direction to continue data collection with repeated checking of p-values and stopping when the p-value is significant. This practices lead to random variation in sample sizes. However, studies in the reported articles all have more or less 20 participants per condition. Thus, optional stopping can be ruled out. However, if a condition with 20 participants does not produce a significant result, it could simply be discarded, and another condition with 20 participants could be run. With a false-positive rate of 5%, this procedure will eventually yield the desired outcome while holding sample size constant. It seems implausible that Dr. Förster conducted 20 studies to obtain a single significant result. Thus, it is even more plausible that the effect is actually there, but that studies with n = 20 per condition have low power. If power were just 30%, the effect would appear in every third study significantly, and only 60 participants were used to produce significant results in one out of three studies. The report provides insufficient information to rule out this QRP, although it is well-known that excluding failed studies is a common practice in all sciences.
  4. Selectively and secretly deleting data of participants (i.e., outliers) to arrive at significant results. The report provides no explanation how this QRP can be ruled out as an explanation. Simmons, Nelson, and Simonsohn (2011) demonstrated that conducting a study with 37 participants and then deleting data from 17 participants can contribute to a significant result when the null-hypothesis is true. However, if an actual effect is present, fewer participants need to be deleted to obtain a significant result. If the original sample size is large enough, it is always possible to delete cases to end up with a significant result. Of course, at some point selective and secretive deletion of observation is just data fabrication. Rather than making up data, actual data from participants are deleted to end up with the desired pattern of results. However, without information about the true effect size, it is difficult to determine whether an effect was present and just embellished (see Fisher’s analysis of Mendel’s famous genetics studies) or whether the null-hypothesis is true.

The English translation of the report does not contain any statements about questionable research practices from Dr. Förster. In an email communication on January 2, 2014, Dr. Förster revealed that he in fact ran multiple studies, some of which did not produce significant results, and that he only reported his best studies. He also mentioned that he openly admitted to this common practice to the commission. The English translation of the final report does not mention this fact. Thus, it remains an open question whether QRPs could have produced the unusual linearity in Dr. Förster’s studies.

A New Perspective: The Curse of Low Powered Studies

One unresolved question is why Dr. Förster would manipulate data to produce a linear pattern of means that he did not even mention in his articles. (Discover magazine).

One plausible answer is that the linear pattern is the by-product of questionable research practices to claim that two experimental groups with opposite manipulations are both significantly different from a control group. To support this claim, the articles always report contrasts of the experimental conditions and the control condition (see Table below).

In Table 1 the results of these critical tests are reported with subscripts next to the reported means. As the direction of the effect is theoretically determined, a one-tailed test was used. The null-hypothesis was rejected when p < .05.

Table 1 reports 9 comparisons of global processing conditions and control groups and 9 comparisons of local processing conditions with a control group; a total of 18 critical significance tests. All studies had approximately 20 participants per condition. The average effect size across the 18 studies is d = .71 (median d = .68).   An a priori power analysis with d = .7, N = 40, and significance criterion .05 (one-tailed) gives a power estimate of 69%.

An alternative approach is to compute observed power for each study and to use median observed power (MOP) as an estimate of true power. This approach is more appropriate when effect sizes vary across studies. In this case, it leads to the same conclusion, MOP = 67.

The MOP estimate of power implies that a set of 100 tests is expected to produce 67 significant results and 33 non-significant results. For a set of 18 tests, the expected values are 12.4 significant results and 5.6 non-significant results.

The actual success rate in Table 1 should be easy to infer from Table 1, but there are some inaccuracies in the subscripts. For example, Study 1a shows no significant difference between means of 38 and 31 (d = .60, but it shows a significant difference between means 31 and 27 (d = .33). Most likely the subscript for the control condition should be c not a.

Based on the reported means and standard deviations, the actual success rate with N = 40 and p < .05 (one-tailed) is 83% (15 significant and 3 non-significant results).

The actual success rate (83%) is higher than one would expect based on MOP (67%). This inflation in the success rate suggests that the reported results are biased in favor of significant results (the reasons for this bias are irrelevant for the following discussion, but it could be produced by not reporting studies with non-significant results, which would be consistent with Dr. Förster’s account ).

The R-Index was developed to correct for this bias. The R-Index subtracts the inflation rate (83% – 67% = 16%) from MOP. For the data in Table 1, the R-Index is 51% (67% – 16%).

Given the use of a between-subject design and approximately equal sample sizes in all studies, the inflation in power can be used to estimate inflation of effect sizes. A study with N = 40 and p < .05 (one-tailed) has 50% power when d = .50.

Thus, one interpretation of the results in Table 1 is that the true effect sizes of the manipulation is d = .5, that 9 out of 18 tests should have produced a significant contrast at p < .05 (one-tailed) and that questionable research practices were used to increase the success rate from 50% to 83% (15 vs. 9 successes).

The use of questionable research practices would also explain unusual linearity in the data. Questionable research practices will increase or omit effect sizes that are insufficient to produce a significant result. With a sample size of N = 40, an effect size of d = .5 is insufficient to produce a significant result, d = .5, se = 32, t(38) = 1.58, p = .06 (one-tailed). Random sampling error that works against the hypothesis can only produce non-significant results that have to be dropped or moved upwards using questionable methods. Random error that favors the hypothesis will inflate the effect size and start producing significant results. However, random error is normally distributed around the true effect size and is more likely to produce results that are just significant (d = .8) than to produce results that are very significant (d = 1.5). Thus, the reported effect sizes will be clustered more closely around the median inflated effect size than one would expect based on an unbiased sample of effect sizes.

The clustering of effect sizes will happen for the positive effects in the global processing condition and for the negative effects in the local processing condition. As a result, the pattern of all three means will be more linear than an unbiased set of studies would predict. In a large set of studies, this bias will produce a very low p-value.

One way to test this hypothesis is to examine the variability in the reported results. The Test of Insufficient Variance (TIVA) was developed for this purpose. TIVA first converts p-values into z-scores. The variance of z-scores is known to be 1. Thus, a representative sample of z-scores should have a variance of 1, but questionable research practices lead to a reduction in variance. The probability that a set of z-scores is a representative set of z-scores can be computed with a chi-square test and chi-square is a function of the ratio of the expected and observed variance and the number of studies. For the set of studies in Table 1, the variance in z-scores is .33. The chi-square value is 54. With 17 degrees of freedom, the p-value is 0.00000917 and the odds of this event occurring by chance are 1 out of 109,056 times.

Conclusion

Previous discussions about abnormal linearity in Dr. Förster’s studies have failed to provide a satisfactory answer. An anonymous accuser claimed that the data were fabricated or manipulated, which the author vehemently denies. This blog proposes a plausible explanation of what could have [edited January 19, 2015] happened. Dr. Förster may have conducted more studies than were reported and included only studies with significant results in his articles. Slight variation in sample sizes suggests that he may also have removed a few outliers selectively to compensate for low power. Importantly, neither of these practices would imply scientific misconduct. The conclusion of the commission that scientific misconduct occurred rests on the assumption that QRPs cannot explain the unusual linearity of means, but this blog points out how selective reporting of positive results may have inadvertently produced this linear pattern of means. Thus, the present analysis support the conclusion by an independent statistical expert mentioned in the LOWI report: “QRP cannot be excluded, which in the opinion of the expert is a common, if not “prevalent” practice, in this field of science.”

How Unusual is an R-Index of 51?

The R-Index for the 18 statistical tests reported in Table 1 is 51% and TIVA confirms that the reported p-values have insufficient variance. Thus, it is highly probable that questionable research practices contributed to the results and in a personal communication Dr. Förster confirmed that additional studies with non-significant results exist. However, in response to further inquiries [see follow up blog] Dr. Förster denied having used QRPs that could explain the linearity in his data.

Nevertheless, an R-Index of 51% is not unusual and has been explained with the use of QRPs.  For example, the R-Index for a set of studies by Roy Baumeister was 49%, . and Roy Baumeister stated that QRPs were used to obtain significant results.

“We did run multiple studies, some of which did not work, and some of which worked better than others. You may think that not reporting the less successful studies is wrong, but that is how the field works.”

Sadly, it is quite common to find an R-Index of 50% or lower for prominent publications in social psychology. This is not surprising because questionable research practices were considered good practices until recently. Even at present, it is not clear whether these practices constitute scientific misconduct (see discussion in Dialogue, Newsletter of the Society for Personality and Social Psychology).

How to Avoid Similar Sad Stories in the Future

One way to avoid accusations of scientific misconduct is to conduct a priori power analyses and to conduct only studies with a realistic chance to produce a significant result when the hypothesis is correct. When random error is small, true patterns in data can emerge without the help of QRPs.

Another important lesson from this story is to reduce the number of statistical tests as much as possible. Table 1 reported 18 statistical tests with the aim to demonstrate significance in each test. Even with a liberal criterion of .1 (one-tailed), it is highly unlikely that so many significant tests will produce positive results. Thus, a non-significant result is likely to emerge and researchers should think ahead of time how they would deal with non-significant results.

For the data in Table 1, Dr. Förster could have reported the means of 9 small studies without significance tests and conduct significance tests only once for the pattern in all 9 studies. With a total sample size of 360 participants (9 * 40), this test would have 90% power even if the effect size is only d = .35. With 90% power, the total power to obtain significant differences from the control condition for both manipulations would be 81%. Thus, the same amount of resources that were used for the controversial findings could have been used to conduct a powerful empirical test of theoretical predictions without the need to hide inconclusive, non-significant results in studies with low power.

Jacob Cohen has been trying to teach psychologists the importance of statistical power for decades and psychologists stubbornly ignored his valuable contribution to research methodology until he died in 1998. Methodologists have been mystified by the refusal of psychologists to increase power in their studies (Maxwell, 2004).

One explanation is that small samples provided a huge incentive. A non-significant result can be discarded with little cost of resources, whereas a significant result can be published and have the additional benefit of an inflated effect size, which allows boosting the importance of published results.

The R-Index was developed to balance the incentive structure towards studies with high power. A low R-Index reveals that a researcher is reporting biased results that will be difficult to replicate by other researchers. The R-Index reveals this inconvenient truth and lowers excitement about incredible results that are indeed incredible. The R-Index can also be used by researchers to control their own excitement about results that are mostly due to sampling error and to curb the excitement of eager research assistants that may be motivated to bias results to please a professor.

Curbed excitement does not mean that the R-Index makes science less exciting. Indeed, it will be exciting when social psychologists start reporting credible results about social behavior that boost a high R-Index because for a true scientist nothing is more exciting than the truth.

The Replicability-Index (R-Index): Quantifying Research Integrity

ANNIVERSARY POST.  Slightly edited version of first R-Index Blog on December 1, 2014.

In a now infamous article, Bem (2011) produced 9 (out of 10) statistically significant results that appeared to show time-reversed causality.  Not surprisingly, subsequent studies failed to replicate this finding.  Although Bem never admitted it, it is likely that he used questionable research practices to produce his results. That is, he did not just run 10 studies and found 9 significant results. He may have dropped failed studies, deleted outliers, etc.  It is well-known among scientists (but not lay people) that researchers routinely use these questionable practices to produce results that advance their careers.  Think, doping for scientists.

I have developed a statistical index that tracks whether published results were obtained by conducting a series of studies with a good chance of producing a positive result (high statistical power) or whether researchers used questionable research practices.  The R-Index is a function of the observed power in a set of studies. More power means that results are likely to replicate in a replication attempt.  The second component of the R-index is the discrepancy between observed power and the rate of significant results. 100 studies with 80% power should produce, on average, 80% significant results. If observed power is 80% and the success rate is 100%, questionable research practices were used to obtain more significant results than the data justify.  In this case, the actual power is less than 80% because questionable research practices inflate observed power. The R-index subtracts the discrepancy (in this case 20% too many significant results) from observed power to adjust for the inflation.  For example, if observed power is 80% and success rate is 100%, the discrepancy is 20% and the R-index is 60%.

In a paper, I show that the R-index predicts success in empirical replication studies.

The R-index also sheds light on the recent controversy about failed replications in psychology (repligate) between replicators and “replihaters.”   Replicators sometimes imply that failed replications are to be expected because original studies used small samples with surprisingly large effects, possibly due to the use of questionable research practices. Replihaters counter that replicators are incompetent researchers who are motivated to produce failed studies.  The R-Index makes it possible to evaluate these claims objectively and scientifically.  It shows that the rampant use of questionable research practices in original studies makes it extremely likely that replication studies will fail.  Replihaters should take note that questionable research practices can be detected and that many failed replications are predicted by low statistical power in original articles.