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Abstract 

Publication bias, the fact that published studies are not necessarily representative of all 

conducted studies, poses a significant threat to the credibility of scientific literature. To mitigate 

the problem, we introduce z-curve 2.0 as a method that estimates two interpretable measures for 

the credibility of scientific literature based on test-statistics of published studies - the expected 

replication rate (ERR) and the expected discovery rate (EDR). Z-curve 2.0 extends the work by 

Brunner and Schimmack (2020) in several ways. First, we extended z-curve to estimate the 

number of all studies that were conducted, including studies with statistically non-significant 

results that may not have been reported, solely on the basis of statistically significant results. 

This allows us to estimate the EDR; that is, the percentage of statistically significant results that 

were obtained in all studies. EDR can be used to assess the size of the file-drawer, estimate the 

maximum number of false positive results, and may provide a better estimate of the success rate 

in actual replication studies than the ERR because exact replications are impossible. Second, add 

bootstrapped confidence intervals to provide information about the uncertainty in the estimates. 

We show in two simulation studies that new estimation methods outperform the original version 

of z-curve 1.0 and p-curve, and illustrate the usage on the example of the Reproducibility 

Project: Psychology. 

 

Keywords: Publication Bias, Replicability, Expected Replication Rate, Expected 

Discovery Rate, File-Drawer 

  



ZCURVE2 3 

Z-curve 2.0: Estimating Replication Rates and Discovery Rates 

It has been known for decades that the published record in scientific journals is not 

representative of all studies that are conducted. For a number of reasons, most published studies 

are selected because they reported a theoretically interesting result that was statistically 

significant (Rosenthal & Gaito, 1964; Scheel, Schijen, & Lakens, 2020; Sterling, 1959; Sterling 

et al., 1995). This selective publishing of statistically significant results introduces a bias in the 

published literature. At least, published effect sizes are inflated. In the most extreme cases, a 

false positive result is supported by a large number of statistically significant results (Rosenthal, 

1979). Some sciences (e.g., experimental psychology) tried to reduce the risk of false positive 

results by demanding replication studies in multiple-study articles (cf. Wegner, 1992). However, 

internal replication studies provided a false sense of replicability because researchers reported 

only successful replication attempts (Francis, 2014; John, Lowenstein, & Prelec, 2012; 

Schimmack, 2012). The pervasive presence of publication bias is a crucial reason of a replication 

crisis in many sciences (psychology: Open Science Collaboration, 2015; Pashler & 

Wagenmakers, 2012, medicine: Begley & Ellis, 2012; Prinz, Schlange, & Asadullah 2011, and 

economics: Camerer et. al., 2016; Chang & Li, 2015).  

To address the problem of publication bias, different methods for the detection of and 

adjustment for publication bias were developed. However, many of them (Egger, Smith, 

Schneider, & Minder, 1997; Ioannidis and Trikalinos, 2007; Schimmack, 2012) perform poorly 

under conditions of heterogeneity (Renkewitz & Keiner, 2019), whereas others employ a meta-

analytic model assuming that the studies are conducted on a single phenomenon (e.g., Hedges, 

1992; Hedges & Vevea, 1996; Maier, Bartoš & Wagenmakers, 2020). Moreover, while the 

aforementioned methods test for publication bias (return a p-value or a Bayes factor), they do not 
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provide an interpretable measure of credibility (i.e., an effect size). Z-curve is aspiring to lift 

those limitations by modeling the observed test statistics with a finite mixture model. Therefore, 

no homogeneity or meta-analytical model assumptions are needed, and it may be a superior 

method for the detection of publication bias when heterogeneity is present. Furthermore, z-curve 

provides two interpretable measures for the credibility of a set of published studies - Expected 

Replicability Rate (ERR) and Expected Discovery Rate (EDR). 

In the following sections, we first explain ERR and EDR - the two measures for assessing 

the credibility of literature. Second, we introduce the new z-curve estimation methods. Third, we 

evaluate the performance of the original z-curve (z-curve 1.0, Brunner & Schimmack, 2020), p-

curve (Simonsohn, Nelson, & Simmons, 2014), and the new z-curve 2.0 using two simulation 

studies. Finally, we present an applied example where we fit the z-curve 2.0 to the test statistics 

from original studies whose replication was attempted by the Reproducibility Project: 

Psychology (Open Science Collaboration, 2015). We provide implementation of the presented 

methods in zcurve R package (Bartoš & Schimmack, 2020). 

Expected Replication Rate 

Our work builds on the mathematical foundations and simulation studies conducted by 

Brunner and Schimmack (2020). Brunner and Schimmack showed that the success rate for a set 

of exact replication studies is equivalent to the mean power of the original studies, which can be 

estimated from test statistics (e.g., t-test, F-test, etc.) of published studies. They explained that 

the term power can be a bit confusing because it is usually used for the conditional probability of 

obtaining a statistically significant result when the null-hypothesis is false. Z-curve 1.0 cannot 

estimate this conditional probability because it does not distinguish between true and false 

hypothesis. Thus, mean power referred to the unconditional probability of obtaining statistically 
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significant results, which includes true null-hypothesis with a probability of alpha. That is, mean 

power is 5% when alpha is .05 and all studies are false positives. To avoid confusion, we 

distinguish conditional and unconditional power. It is also important to distinguish between two 

populations of studies (Brunner & Schimmack, 2020). One population of studies are all studies 

that were conducted, including studies with statistically non-significant results. The other 

population is the population of studies that produced a statistically significant result. The 

unconditional mean power of the studies with a significant outcome determines the success rate 

if all of these studies were replicated exactly. Z-curve 1.0 estimates the unconditional mean 

power of a set of studies that were selected to be statistically significant to predict the percentage 

of significant results if the studies were exactly replicated. We call this probability the expected 

replication rate (ERR). 

Expected Discovery Rate 

A new feature of z-curve 2.0 is that it estimates the expected discovery rate (EDR). As 

noted above, it is important to distinguish between the population of all studies that were 

conducted, and the population of studies selected for statistical significance. These two 

populations have different levels of mean power unless all studies have the same power. The 

reason is that selection for statistical significance favors studies with high power because studies 

with high power are more likely to produce statistically significant results. Consequently, the 

unconditional mean power of the full population is lower than the unconditional mean power 

after selection for statistical significance (Brunner & Schimmack, 2020). The discovery rate is 

simply the unconditional mean power of all studies that were conducted, including those with 

statistically non-significant results. If all studies were published, the discovery rate is simply the 

percentage of studies with statistically significant results. However, when selection bias is 
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present, the observed discovery rate overestimates the true discovery rate. Z-curve 2.0 aims to 

estimate the discovery rate based on a finite mixture model of the studies with statistically 

significant results.  

For example, if researchers tested 40 false hypotheses (H0 is true) and 60 true hypotheses 

with 80% power, we would observe 40*.05 + 60*.80 = 2 + 48 = 50 statistically significant 

results. Thus, the true discovery rate is 50/100 = 50%. If only 10 out of the 40 statistically non-

significant results are reported, the observed discovery rate is 50/(50+10) = 83%. This observed 

discovery rate provides a false impression of the robustness of a literature. We examine whether 

z-curve 2.0 can recover the true discovery rate of 50% by fitting a finite mixture model to the test 

statistics of the 50 studies with statistically significant results. We refer to this estimate as the 

expected discovery rate (EDR).  

Imagine a set of studies with the same unconditional power p (probability of obtaining a 

statistically significant result irrespective of the null hypothesis being false or true). If all of them 

test the same effect with a two-sided z-test, their p-values converted to z-scores follow a normal 

distribution with mean А and standard deviation equal to 1. Using an alpha level α, the 

relationship between p and А can be depicted in Equation 1. It describes that the power p is 

equal to the sum of probability of a z-statistic higher than the cutoff z-score corresponding to α 

on the right and left side of the distribution with   standing for cumulative density function of 

standard normal distribution, 

ὴ ρ    ρ  А      А .  (1) 

P-values do not preserve the direction of the deviation from null and we cannot know 

whether a z-statistic comes from the lower or upper tail of the distribution. Therefore, we work 

with absolute values of z-statistics, changing their distribution from normal to folded normal 
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distribution (Elandt, 1961; Leone, Nelson, & Nottingham, 1961). Switching from z-statistics to 

absolute z-statistics  does not impact Equation 1. 

If we have K studies with heterogenous power due to variation in effect sizes or sample 

sizes, the distribution of expected test statistics can be approximated with  a mixture of K normal 

distributions. These normal distributions are centered at studies individual means А  (k = 1:K) 

corresponding to their powers ὴ with standard deviation 1, respectively to the corresponding 

folded normal distributions. 

However, statistically non-significant p-values are often not published. Publication bias 

works as a censoring mechanism on p-values that leaves only p-values less than the statistical 

significance criterion, alpha. Even if some non-significant p-values are reported, their 

distribution is subject to unknown selection effects. Therefore, only  observed p-values lower 

than alpha are used to estimate ERR and EDR, making the folded normal distribution truncated 

from left at z-score corresponding to alpha.  

Figure 1 illustrates key concepts. The first row of Figure 1 shows folded standard normal 

distributions for studies with 0.3, 0.5, and 0.8 power and a mixture of these studies with equal 

weights assigned to the three power values. It can be seen that the mode of the distributions 

moves to the right with increasing levels of power. The second row illustrates the effect of 

selection for statistical significance which is z = 1.96 with p = .05, two-sided.  

The third row illustrates the discovery rate, which is the proportion of the area under the 

curve on the right side of the statistical significance criterion. Z-curve aims to estimate the full 

area under the curve, including the area for statistically non-significant results on the basis of the 

shape of the truncated distribution on the right side of the statistical significance criterion. 
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Figure 1. Explanation of EDR and ERR using distributions of z-scores for studies with different 

power (columns). 

  

The fourth row shows the distribution of z-statistics that is expected if only the 

statistically significant studies are replicated exactly. As shown, some of these studies will 

produce statistically non-significant results even though they are exact replications of studies that 

were selected for statistical significance. The reason is that selection for statistical significance 

produces inflated estimates of effect sizes that are bound to regress to the mean in the replication 

studies. The fifth row illustrates the replicability rate the proportion of studies that did reproduce 

a statistically significant result in the exact replication attempts. As shown, the ERR increases 

with increasing power of studies.  
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We can also define the EDR and ERR using the power of original studies. In case of EDR, 

the proportion of statistically significant studies from K conducted studies is simply the mean of 

the individual studies’ power ὴ, 

ὉὈὙ 
В

.  (2) 

And the ERR is a proportion of successfully replicated statistically significant studies 

from all statistically significant studies. It can be written as a probability obtaining a statistically 

significant result twice in a row (ὴ ὴz) dived by the number of all statistically significant 

studies, 

ὉὙὙ
В ᶻ

В
.  (3) 

The EDR is useful for three reasons. First, it can be used to compare the EDR with the 

observed discovery rate (i.e., the percentage of statistically significant results that are published 

or were retrieved for a meta-analysis). Discrepancies between EDR and ODR suggest that 

publication bias is present. EDR can also be used to examine the false positive rate; that is, the 

percentage of statistically significant results that are false positives. Although it is theoretically 

impossible to determine the false positive rate, the maximum false positive rate is a function of 

the discovery rate (Sorić, 1989). When publication bias is present, the observed discovery rate 

would underestimate the risk of false positive results. However, z-curve estimates of the EDR 

correct for publication bias and provide some information about the maximum number of false 

positive results. Finally, it is possible that the EDR is a better predictor of success rates in actual 

replication studies than the expected replication rate (ERR). ERR estimates predict the outcome 

of replication studies under ideal conditions where replication studies are exact copies of the 

original studies. However, if replication studies are merely sampled from a population of similar 

studies with varying effect sizes, selection bias will favor studies with larger effect sizes, and 
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regression to the mean will reduce the success rate of replication studies. As EDR is not based on 

a single study, but rather a population of studies that were attempted, it is more likely to reflect 

the success rate when regression to the mean is taken into account. 

Z-curve 2.0 

We developed two versions of z-curve that are based on z-curve 1.0 (see Brunner & 

Schimmack, 2020 for technical details of z-curve 1.0). Rather than trying to estimate the powers 

of individual studies directly, z-curve uses the observed statistically significant results (the 

second row in Figure 1) to estimate the whole distribution of all conducted studies (the first row 

in Figure 1). Z-curve 2.0 does that by using a finite mixture model of J = 7 truncated folded 

normal distributions, with probability density function of an observed test statistic z,  

Ὢᾀȟɡ  В “Ὢ ȟ ᾀȠʃ .  (4) 

Each mixture component j has its own weight “ and probability density function Ὢ ȟ  

with parameters ʃ. We set the standard deviations of all components to 1 and space their means 

А equally across the z-scores at values 0, 1, 2, 3, 4, 5, and 61. We truncate the distribution function 

from left at a corresponding to the statistical significance level ὥ and from left at b = 6. All z-

scores higher than 6 are very likely to come from distribution with power essentially equal to 1 

and their removal mitigates estimation issue. After the model is estimated, we add the held-out z-

statistics back with ὴ equal to 1 and rescale the estimated weights “ to add to 1. 

We use the model parameters and Equation (1) and (2) to estimate the EDR, 

 

 

1 Comparable results (for the EM algorithm) could be obtained if the number and/or location of the components were estimated and selected 

using AIC/BIC. The described model setting is presented for simplicity and computational efficiency. 
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ὉὈὙВ “  zρ    ρ  А      А ,  (5) 

and Equation (1) and (3) to estimate the ERR, 

ὉὙὙ
В ᶻ  А   А

В ᶻ  А   А
.  (6) 

Density based z-curve 

The first version, KD2, is a direct extension of z-curve 1.0. That is, the distribution of the 

observed z-statistics is first approximated with a truncated kernel-density distribution for z-

statistics ranging from the statistical significance criterion (z = 1.96) to the value for extreme z- 

statistics (z > 6). Then, we estimate weights “ of the mixture model outlined in Equation (4), by 

minimizing root mean square error (RMSE) of the estimated z-statistics’ density and the mixture 

model’s density using the nlminb package in R (Wuertz, 2014). 

Expectancy-maximization (EM) z-curve 

The second method does not require fitting a kernel-density distribution to the observed 

z-statistics. Instead, we fit the model (Equation 3) directly to the observed z-scores using the EM 

algorithm (Dempster, Laird, & Rubin, 1977, Lee & Scott, 2012). The EM algorithm maximizes 

the logarithmic likelihood of data given the model parameters. After initiation with starting 

values, it proceeds in two steps. First, the “E” step, computes the posterior probability of the 

individual data points belonging to a given component using the components parameters. 

Second, it maximizes the components parameter values given the posterior probabilities of 

individual components. The algorithm oscillates between the two steps until it reaches a 

convergence criterion or a prespecified number of iteration (Bishop, 2006). 

In order to prevent the algorithm from reaching local minima, we run it 20 times with 

randomly selected starting weights and terminate the algorithm in the first 100 iterations, or if the 
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criterion falls below 1e-3, then select the outcome with the highest likelihood value and continue 

until 1000 iterations or reaching criterion 1e-5. To speed up the fitting process we optimizing the 

procedure using Rcpp (Eddelbuettel et al., 2011). 

P-curve 

P-curve is an alternative method for the estimation of unconditional mean power after 

selection for significance, which we call the Expected Replication Rate (Simonsohn, Nelson, & 

Simmons, 2014). As it was published several years before z-curve.1.0, it has become a popular 

tool to examine the credibility of meta-analytic results (P-Curve has more than 1,000 citations 

according to Google Scholar, at the time of writing).  

Brunner and Schimmack (2020) compared p-curve and z-curve.1.0 and found that p-

curve provides systematically inflated point estimates of the ERR when power varies across 

studies. Moreover, Brunner (2018) demonstrated that the latest version of p-curve (p-curve 4.06 

that was implemented in 20zz) even produces inflated estimates when effect sizes are 

homogeneous, but studies vary only in sample sizes. Brunner and Schimmack (2020) focused on 

point-estimates. Here we extend their investigation of p-curve by comparing the coverage of 

95% confidence intervals for z-curve.2.0 and p-curve.  Our results provide valuable information 

for meta-analysts because p-curve 4.06 has been adopted as a method of choice without proper 

evaluation of the coverage of its confidence intervals. 

Simulations 

In a previous simulation study, Brunner and Schimmack (2020) compared several 

methods for the estimation of mean power and found that the original z-curve performed best 

under realistic conditions; that is, when effect sizes varied across studies and the distribution of 

effect sizes was unknown. Here, we conducted two new simulation studies that examined the 

https://replicationindex.com/2018/05/10/an-even-better-p-curve/
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performance of z-curve and p-curve across a wider range of conditions. The most important new 

feature was that we simulated mixtures of false positives (the null-hypothesis is true) and real 

effects.  

Since it is impossible to examine the performance of z-curve for all possible scenarios 

when studies are heterogeneous in power. To demonstrate the robustness of z-curve estimates, 

and to guard against simulation-hacking, each author independently created a simulation study. 

František Bartoš created Simulation F and Ulrich Schimmack created Simulation U.  

Simulation F 

The first simulation scenario used beta distributions scaled and shifted to range from .05 

to 1 to create true power distributions of studies with mean power А and sd „ (possible shapes 

of these distributions in Figure 2). True power of individual studies ὴ was randomly sampled 

from the true power distribution. The true power values were transformed into corresponding А  

using Equation (1). Observed z-statistics were obtained by randomly sampling from the normal 

distributions centered at А  with standard deviation of 1. We also added proportion of false-

positives results (FDR) with z-statistics sampled from a standard normal distribution. Finally, we 

took absolute value of the observed z-statistics before passing them to our estimation methods.  

We sampled the А from uniform distribution (0.10, 0.95), FDR from uniform 

distribution (0, 1) and introduced heterogeneity in power by setting „ to 0.05 or 0.10. For each 

number of statistically significant studies K = (100, 300, 1000) we generated 25000 datasets. 
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Figure 2. Different distributions for power of studies with А = {0.10, 0.30, 0.50, 0.80, 0.95) 

with „ = 0.05 on left and „ = 0.10 on right. 

 

Simulation U 

The first set of simulations simulated sampling error with a standard normal distribution. 

This may advantage z-curve because the p-values originated from a standard normal distribution. 

However, most test statistics in psychology are t-tests or F-tests that do not have symmetrical 

distributions when the null-hypothesis is false. In this case, the use of z-statistics is an 

approximation that may introduce some systematic bias. Brunner and Schimmack (2020) found 

that this did not influence the estimated replication rate. However, it could have a stronger 

influence on estimates of the estimated discovery rate. Thus, simulation U simulated t-tests. The 

simulation also relied on knowledge about typical effect sizes and sample sizes in psychology to 

test z-curve 2.0 under realistic conditions.  

The mean effect sizes, Cohen’s ds, ranged from 0 to .6 (0, .2, .4., .6). Heterogeneity in 

effect sizes was simulated with a normal distribution around the mean effect size with SDs 

ranging from 0 to .6 (0, .2, .4., .6). Sample sizes for a between-subject design were N = 50, 100, 

and 200. In addition to this manipulation of power, the simulations included some studies with 
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true null-hypotheses. The percentage of true null-hypotheses ranged from 0 to 60% (0%, 20%, 

40%, 60%). Each cell of this design was tested for sets of 100, 300, and 1,000 statistically 

significant studies. This 4 x 4 x 4 x 3 x 3 design has 576 cells. To obtain reliable estimates, we 

ran 100 simulations for each of the 576 cells. The simulations and model fitting functions are 

accessible at https://osf.io/r6ewt/. 

Evaluation 

We evaluated the algorithms using bias, mean distance between estimated and true 

values, root mean square error (RMSE) and confidence interval coverage. To check the 

performance of the z-curve across different simulation settings (Appendix A and B), we plotted 

bias across true FDR and power. Because the simulations F sampled parameters uniformly from 

the parameter space, we fitted generalized additive models (GAM) with s-spline over true FDR, 

power and standard deviation of the power distribution using mgcv package in R (Wood, 2012). 

We used the estimated model to display variation in bias and CI coverage as a function of true 

parameter values. On the other hand, the simulations U use discrete parameter values and fully 

factorial design, therefore, we analyzed them using analyses of variance (ANOVAs) and logistic 

regressions. The analysis scripts and results are accessible at https://osf.io/r6ewt/. 

Results 

ERR 

Visual inspection of the z-curves ERR estimates plotted against the true ERR values did 

not show any pathological behavior due to the approximation by a finite mixture model in 

simulations F (Figure 3a) nor simulation U (Figure 3b). However, the p-curve ERR estimates 

showed systematic overestimation for high values and underestimation for low true ERR values. 

Furthermore, whereas z-curves estimates were converging to the true values with increasing 
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number of studies, the same was not true for p-curve which particularly struggled in simulation 

U. 

 
Figure 3a. Estimated (y-axis) vs true (x-axis) ERR in simulation F across a different number of 

studies. 
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Figure 3b. Estimated (y-axis) vs true (x-axis) ERR in simulation U across a different number of 

studies. 

 

Tables 1 and 2 confirmed the visual inspection. The bias (Table 1) and RMSE (Table 2) 

of ERR was decreasing with sample size for all z-curves, with the EM-algorithm slightly 

outperforming the kernel-density method in all condition. Furthermore, all z-curves noticeably 

outperformed p-curve and the bias and RMSE of p-curve was increasing with increasing number 

of studies in simulation U. 
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 Simulation F Simulation U 

 KD1 KD2 EM p-curve KD1 KD2 EM p-curve 

100 0.007 0.008 -0.002 -0.066 0.006 -0.004 -0.009 0.049 

300 -0.003 0.004 -0.001 -0.043 -0.007 -0.007 -0.009 0.078 

1000 -0.008 0.002 0.001 -0.024 -0.015 -0.009 -0.008 0.096 

Table 1. The bias of estimated ERR in each simulation across a different number of studies. 

 

 Simulation F Simulation U 

 KD1 KD2 EM p-curve KD1 KD2 EM p-curve 

100 0.058 0.056 0.050 0.099 0.057 0.053 0.051 0.164 

300 0.038 0.037 0.032 0.075 0.038 0.035 0.033 0.165 

1000 0.028 0.026 0.021 0.063 0.029 0.026 0.022 0.170 

Table 2. RMSE of estimated ERR in each simulation across a different number of studies. 

 

The CI coverage of ERR (Table 3) showed problems for all algorithms and was not 

improving with increasing number of studies. The CI coverage issues were more pronounced in 

simulation U. The EM-algorithm performed better for simulation F and the KD2 algorithm 

performed better for simulation U, but none of the methods produced acceptable coverage across 

all conditions. Nevertheless, all z-curves notably outperformed p-curve which produced coverage 

as low as 17.4%., and never exceeded 50% coverage for a 95% confidence interval. 

 

 simulation F simulation U 

 KD1 KD2 EM p-curve KD1 KD2 EM p-curve 

100 0.947 0.935 0.933 0.448 0.894 0.913 0.885 0.214 

300 0.935 0.901 0.924 0.405 0.884 0.902 0.872 0.202 

1000 0.893 0.839 0.891 0.272 0.803 0.853 0.830 0.174 

Table 3. CI coverage of ERR in each simulation across a different number of studies. 

 

The main reason for low coverage was systematic bias. When the estimate is 

systematically biased, the CIs are centered over the wrong value. To address this problem, we 
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constructed conservative confidence intervals (CCI) by extending the CI to account for 

systematic bias. We found that adding three percentage points on each side dramatically 

improved coverage for z-curves across all sample sizes (Table 4) and provided sufficient 

improvement to produce at least nominal coverage for all z-curves across most simulated 

scenarios (Appendix A). Even though the p-curve CI coverage also improved, it still failed to 

reach acceptable levels of coverage. 

 

 simulation F simulation U 

 KD1 KD2 EM p-curve KD1 KD2 EM p-curve 

100 0.986 0.984 0.984 0.681 0.985 0.990 0.984 0.335 

300 0.991 0.986 0.992 0.731 0.991 0.995 0.990 0.353 

1000 0.993 0.985 0.991 0.726 0.995 0.998 0.992 0.362 

Table 4. Adjusted CI coverage of ERR in each simulation across a different number of studies. 

 

EDR 

Visual inspection of EDRs plotted against the true discovery rates (Figure 4) showed a 

noticeable increase in uncertainty around the true values as a result of extrapolating from the 

observed statistically significant results towards the unobserved statistically non-significant 

results. In addition, there was a systematic overestimation over the whole range of true discovery 

rates for both newly proposed z-curve methods in simulation F (Figure 4 left) and simulation U 

(Figure 4 right). Nevertheless, the overestimation of EDR was decreasing with increasing 

number of studies, and the estimates were converging to their true values.  
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Figure 4. Estimated (y-axis) vs true (x-axis) EDR in simulation F (left panel) and simulation U 

(right panel) across a different number of studies. 

 

Overestimation was also clearly visible in the deviations of estimated EDRs from true 

EDR (Table 5). The problem was more pronounced in simulation F and was decreasing with 

increasing sample size. The EM algorithm outperformed KD2 in both simulations and across all 

sample sizes. Furthermore, EM estimates were almost unbiased (lower than 0.01) in simulation 

U with higher samples sizes (N = 300 and 1000).  

 

 Simulation F Simulation U 

 KD2 EM KD2 EM 

100 0.041 0.030 0.029 0.014 
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300 0.034 0.023 0.021 0.006 

1000 0.030 0.016 0.020 0.002 

Table 5. The bias of estimated EDR in each simulation across a different number of studies 

 

The much higher RMSE of EDRs (Table 6) than ERRs (Table 2) confirms that it is much 

harder to predict discovery rates than to predict replication rates due to the missing information 

about statistically non-significant results. The RMSE of the EDRs was higher in simulation U 

than in simulation F. The EM algorithm outperformed KD2 across both simulation and sample 

sizes.  

 

 Simulation F Simulation U 

 KD2 EM KD2 EM 

100 0.102 0.092 0.127 0.117 

300 0.077 0.070 0.097 0.089 

1000 0.058 0.050 0.074 0.065 

Table 6. RMSE of estimated EDR in each simulation across a different number of studies 

 

The CI coverage of EDR did not reach the nominal level of 95% and it decreased with 

increasing number of studies (Table 7). This time a bigger adjustment by five percentage points 

in each direction was needed to obtain acceptable overall coverage (Table 8) and a good 

coverage across a wide range of scenarios (Appendix B). 

 

 simulation F simulation U 

 KD2 EM KD2 EM 

100 0.914 0.903 0.883 0.857 

300 0.876 0.890 0.855 0.833 

1000 0.745 0.847 0.777 0.791 

Table 7. CI coverage of EDR in each simulation across a different number of studies 
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 simulation F simulation U 

 KD2 EM KD2 EM 

100 0.986 0.983 0.983 0.980 

300 0.988 0.986 0.986 0.979 

1000 0.992 0.985 0.989 0.975 

Table 8. CI coverage of EDR in each simulation across a different number of studies 

 

Application to Real Data 

A large team of psychology researchers replicated 100 studies from three psychology 

journals to estimate the replicability of published results (Open Science Collaboration, 2015). 

This unprecedented effort has attracted attention within and outside of psychological science and 

the article has already been cited over 1,000 times. The key finding was that out of 97 

statistically significant results, including marginally significant ones, only 36 studies (37%) 

reproduced a statistically significant result in the replication attempts. This finding has produced 

a wide range of reactions. Often the results are cited as evidence for a replication crisis in 

psychological science, especially social psychology (Schimmack, 2020). Others argue that the 

replication studies were poorly carried out and that many of the original results are robust 

findings (Bressan, 2019), but a recent study replicated 10 of the failed replication studies with 

much larger samples and was able to get significant results in only 2 out of the 10 studies. Not a 

single study would have produced significant results with the effect size of the replication studies 

and the sample size of the original studies (Ebersole et al., 2020) These results affirm that 

replication failures are due to problems with the original studies and not the replication studies. 

Z-curve can provide valuable objective information about the replicability of the 

published results because it relies on the test statistics that were reported in the published articles. 

Therefore, it avoids the problem of actual replication studies that it is often difficult to reproduce 
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the original conditions of an experiment. Furthermore, it does not assume that the studies 

correspond to a single phenomenon, thus allowing to estimate ERR and EDR of highly 

heterogenous and unrelated studies. We used newly created z-curve package (Bartoš & 

Schimmack, 2020; accessible at https://cran.r-project.org/web/packages/zcurve/) to fitted z-curve 

2.0 to 90 statistically significant results. We excluded 7 studies where the replication results were 

ambiguous. This did not affect the actual replication rate, 35/90 (38.9%). The EM algorithm 

results were ERR = .62, 95% CCI [.46, .75] and EDR = .39, 95% CCI [.08, .70]. Figure 5 shows 

the package generated visualization of the z-curve EM model fit to the observed z-scores. The 

KD2 results were ERR = .61, 95% CCI [.44, .77], and EDR = .51, 95% CCI [.12 to .73]. 

Although the EDR confidence intervals are wide, the discovery rate is well below the actual 

discovery rate even if marginally significant results are treated as statistically non-significant 

results, ODR = .98, 95% CI [.91, 1]. Thus, z-curve 2.0 provides clear evidence that the original 

results were selected for statistical significance. As a result, regression to the mean inevitably 

would make it impossible to replicate all results. It is impossible to draw strong conclusions 

about the replicability of published results because the sample size is modest. The ERR estimates 

of 61% or 62% are higher than the actual discovery rate of 39%, but the CCIs are wide and the 

lower bounds of the CCIs match the upper bound of the CI for the actual discovery rate, 95% CI 

[.29, .49]. Moreover, ERR assumes that the replication studies are exact copies of the original 

studies. If, however, replication studies are drawn from a sample of similar studies with varying 

effect sizes, EDR is a more reasonable estimate of the actual success rate in a set of similar 

studies. The reason is that the replication studies are actually new studies that are drawn from a 

population of studies with varying population effect sizes. As the results of these replication 

studies are not selected for statistical significance, the unconditional mean power of these studies 
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is lower than the unconditional mean power of studies that were published because they achieved 

a statistically significant result. Consistent with this logic, EDR estimates (EM-EDR = 39%, 

KD2-EDR = 51%) are closer to the observed replication rate. To further explore this issue, larger 

samples of actual replication studies are needed.  

Our EDR estimates also provide new insights about the percentage of false positive 

results that are published in psychology journals. Although the exact rate of false positives 

cannot be estimated, it is possible to estimate the maximum percentage of false positives on the 

basis of the discovery rate, using the formula max.FPR = (1/EDR - 1)*(.05/.95) (Sorić, 1989). 

This formula gives a maximum FDR of 8% for EM and 5% for KD2. However, these estimates 

are based on the point estimates of the EDR. A true maximum with a 5% error probability is 

obtained by using the lower bound of the CCIs to compute max.FDR. This yields a max.FDR of 

65% for EM and 40% for KD2. While the KD2-based estimate is below 50%, the EM is above 

the threshold does not allowing to reject the Ioannidis’s (2005) claim that most published results 

are false positives. However, the results still indicate that at least for the studies in the OSC 

replication project, low power might be a bigger problem than false positives. That being said, 

the maximum FDR only applies to the definition of false rejections of the null-hypothesis that 

there is absolutely no effect. It would be much higher if even small and practically non-

significant effect sizes would be included in the definition of the null-hypothesis. In this regard, 

even significant results in replication studies with small effect sizes should not be considered 

successful replications of original studies with vastly inflated effect sizes (Ebersole et al., 2020). 
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Figure 5. The estimated EM z-curve for the OSC data. The histogram shows the distribution of 

observed z-statistics with the vertical red line showing the statistical significance criterion. The 

full blue line displays the density of the estimated model with the dotted line standing for 

(uncorrected) piece-wise confidence intervals. 

Discussion 

We extended z-curve 1.0 in multiple ways. First, we examined the performance of z-

curve 1.0 in a new set of challenging simulations and compared it to two new estimation 

methods. We found that all z-curve methods produced robust estimates of the expected 

replication rate in contrast to the estimates provided by p-curve, which produced estimates with 

high bias and variance, inadequate CI coverage, and was not converging to the true values with 

increasing number of studies. Second, we evaluated the performance of bootstrapped confidence 

intervals to provide users with information about the uncertainty of z-curve estimates. We found 

that even small systematic bias reduced coverage below the nominal level of 95% under some 
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conditions. We were able to remedy this problem by extending the confidence interval of the 

ERR by three percentage points. Z-curve 2.0 will use these conservative confidence intervals as 

the default method. Third, we compared fitting z-curve to a kernel-density distribution of 

observed z-scores with an expectation-maximization algorithm that is fitted directly to the 

observed z-scores. Both methods produced similar results, but the results were not identical. 

Overall, the EM algorithm produced estimates with less bias and lower RMSE. However, the 

kernel-density methods produced estimates with slightly better coverage across a wider range of 

scenarios. With small sets of studies, the EM method is faster, especially when confidence 

intervals are requested. However, computation can take a long time for large sets of studies. In 

this case, the kernel-density approach reduces the number of data points that need to be fitted and 

is considerably faster. We provide users with the option to use either method. Typically, both 

methods yield similar results. When results diverge, the data should be carefully examined and 

results from both methods should be reported to alert readers that model specifications matter.  

The theoretically more important contribution was the extension of z-curve to estimate 

the expected discovery rate solely based on statistically significant results. To estimate the 

densities for statistically non-significant values, z-cuve.2.0 used Brunner and Schimmack’s 

(2020) third theorem that relates the population of studies after selection for statistical 

significance to the population of studies before selection for statistical significance. Our 

simulation studies showed that z-curve 2.0 is able to provide useful estimated of the expected 

discovery rate. Although these estimates are sometimes biased, the amount of bias is typically 

small enough to provide useful information about the discovery rate in a set of published studies. 

Moreover, across a wide range of scenarios z-curve 2.0 tends to overestimate the discovery rate, 

which makes it a conservative tool for the assessment of publication bias. On the other hand, it 

creates an optimistic bias when the EDR is used to estimate the false discovery rate (Sorić, 

1989).  

We were able to create a conservative confidence interval for the EDR by widening the 

bootstrapped confidence interval by five percentage-points on each side. These conservative 
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confidence intervals had good coverage across a wide range of scenarios. Thus, users should 

focus more on the range of values indicated by the confidence interval than on the point estimate. 

We demonstrated the usefulness of z-curve 2.0 estimates with studies from the Reproducibility 

Project (Open Science Collaboration, 2015). For 90 studies the observed discovery rate was 

96%, which is consistent with Sterling’s findings (Sterling, 1959; Sterling et al., 1995). Z-curve 

showed that this high discovery rate is inflated by selection for statistical significance. We were 

also able to estimate the maximum false discovery rate from the EDRs, using Sorić’s (1989) 

formula and found that the maximum false discovery rate is 40% for KD2 and 65% with EM 

with an error probability of 5%. 

Estimating Replicability on the Basis of Original Test Statistics 

The past ten years have seen a crisis of confidence in the replicability of published results 

in scientific journals. The reason for this crisis was that it was nearly impossible to publish 

statistically non-significant results that failed to replicate original results. This has changed. The 

past decade has seen a sharp rise in publications of replication failures. Although we welcome 

initiatives like registered replication reports, we think that actual replication studies alone are 

unable to solve the replication crisis in psychology for several reasons. First, actual replication 

studies are costly and have been limited to paradigms that are relatively cheap. The costs to 

conduct actual replication studies for longitudinal studies or studies with expensive equipment 

are astronomical and would take away from scientists’ ability to investigate new questions.  

The second problem is that actual replication studies have failed to create a scientific 

consensus about the status of important theories. A major concern is that replication studies may 

have suffered from methodological problems (cf. Schimmack, 2020). We agree that it can be 

difficult to determine whether inconsistent results are caused by problems in original studies or 

in replication studies. Z-curve is helpful because it relies on the published results in original 

studies. Therefore, it avoids the problem of recreating experimental conditions. Using the 

published results of original articles, we found that only 61% of these studies were expected to 

produce a statistically significant result again, even if it were possible to recreate the original 
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studies exactly; with the same sample sizes. Thus, nobody should have been surprised that the 

actual success rate was not 100%. However, without z-curve estimates no clear predictions could 

be made about the expected replication rate.  

The estimate of 61% makes it possible to ask a new question, namely why the actual 

success rate was only 39% and not 61%. There are several possible answers to this question. 

First, there is sampling error in both replication rates and the discrepancy may be smaller than 22 

percentage points. Second, it is possible that z-curve estimates are too high because the selection 

model does not match researchers’ practices (John et al., 2012). Examining the performance of z-

curve with different types of questionable research practices is one avenue for future research. 

Third, it is possible that actual replication studies differed in important ways from the original 

study (Luttrell, Petty, & Xu, 2017). 

The most interesting hypothesis is that replication studies differ from the original studies 

in unknown ways that influence the outcome of similar, yet not identical studies (van Bavel et 

al., 2016). Z-curves’ ERR estimates assume that it is possible to recreate original studies exactly. 

However, replication studies are never exact copies of original studies. Thus, actual replication 

studies are more like a random draw from a population of studies. This idea is illustrated by 

Moorwedge et al.’s description of a research process where researchers try several modifications 

of a paradigm and publish only the results of studies that produced a statistically significant 

result (Morewedge, Gilbert, & Wilson, 2014). In this case, a replication study is not an exact 

replication of the one published study, but another random sample from the population of studies 

that were attempted. And because the published studies were selected for statistical significance, 

regression to the mean implies that the power of the replication study will be less than power of 

the original study. As a result, the success rate of replication studies is better predicted by the 

expected discovery rate than the expected replication rate. According to this line of reasoning, we 

would expect as few as 39% statistically significant results based on the EM estimate of the 

EDR, which is perfectly in line with the actual success rate. Unfortunately, the small sample size 

of the OSC dataset makes it impossible to test this hypothesis more thoroughly. Once more 
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results from credible, pre-registered replication studies become available, it will be interesting to 

compare the ERR and EDR as predictors of the actual success rate in replication studies.  

Estimating the Size of the File Drawer 

Numerous methods have been developed to examine the presence of publication bias and 

to correct for the influence of publication bias. A key problem of the existing methods is that 

their results are not trustworthy under conditions of heterogeneity (Inzlicht, Gervais, & Berkman, 

2015; Renkewitz & Keiner, 2019). For example, regression methods cannot distinguish between 

publication bias and stronger effects in smaller samples. Inzlicht et al.’s critique has raised 

concerns about the use of bias-correction methods when data are heterogenous (Cunningham & 

Baumeister, 2016; Inzlicht & Friese; 2019). 

With z-curve 2.0, we introduce a method that can provide valid information about the 

presence and the extent of publication bias under conditions of heterogeneity. The reason is that 

z-curve 2.0 explicitly models heterogeneity rather than simply assuming that results are robust 

under conditions of heterogeneity. Furthermore, it does not assume that the conducted studies 

were studying a single phenomenon, and thus can be used to estimate replicability for whole 

fields or journals. That opens doors for larger meta scientific questions that can be explored 

using big datasets, greatly reducing the uncertainty of provided estimates. We demonstrated in 

extensive simulation studies that z-cuve.2.0 provide useful estimates of the expected discovery 

rate that can be compared to the observed discovery rate to asses publication bias. We 

demonstrated the usefulness of these estimates by demonstrating that original studies in the 

reproducibility project were selected for statistical significance and that for every published 

study between one or two studies were attempted, but produced statistically non-significant 

results that were not reported. Given the widespread concerns about other bias-detection 

methods, we recommend z-curve 2.0 as a valuable tool to ensure that meta-analytic effect size 

estimates are not inflated by publication bias by comparing the observed discovery rate to the 

expected discovery rate.  
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How Many Results are False Positives?  

Failed replication studies have sometimes been misinterpreted as evidence that most 

published results in psychological science are false positives (cf. Brunner & Schimmack, 2020). 

However, interpreting statistically non-significant results as evidence for the null-hypothesis is a 

mistake. A statistically non-significant result could also be a type-II error (that is, the effect size 

is not zero, but the signal-to-noise ratio was too small to be statistically significant). To 

complicate matters, it is actually impossible to provide positive evidence for the nil-hypothesis 

(e.g., demonstrate that there are no purple swans on Earth). There is always a small chance that 

the signal is just so small that we didn’t discover it (Cohen, 1994). Thus, trying to quantify the 

actual percentage of true null-hypothesis is a fools’ errand.  

However, it is possible to estimate the maximum number of false positives in a set of 

studies (Sorić, 1989). For example, if we did 100 studies and obtained 100 statistically 

significant results, the discovery rate (100%) makes it clear that most if not all studies were true 

positives. After all, an honest test of a true null-hypothesis produces many statistically non-

significant results. If, on the other hand, we discover only 5 statistically significant results in 100 

tests, the percentage matches the error rate and we would have expected 5 statistically significant 

results if the null-hypothesis was true in all 100 studies. Thus, all five discoveries could be false 

positives. Sorić provided a formula that specified the maximum false positive discoveries as a 

function of the observed discovery rate. This formula only works when we have access to all 

attempts that were made. However, selection bias inflates the discovery rate and attenuates the 

estimate of the maximum false discovery rate. As selection bias is pervasive in psychological 

journals, the observed discovery rate of 90% is misleading. Z-curve 2.0 solves this problem by 

estimating the actual discovery rate based on the published statistically significant results. The 
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EDR estimates can then be used with Sorić’s formula to get estimates of the maximum false 

discovery rate. When we applied z-curve 2.0 to the OSC data, we obtained the lower EDR 

estimate with the EM algorithm. However, even with the EM algorithm and a conservative 

confidence interval, the lower bound estimate was an EDR of 8%. With this low discovery rate, 

Sorić’s (1989) formula yields a false discovery rate of 65%. Thus, the small sample size and the 

resulting wide confidence intervals make it impossible to accept or reject Ioannidis’s prediction 

that most published results are false positives. However, with larger sample sizes, z-curve 

estimates of the discovery rate and Sorić’s formula can be used to test this prediction. However, 

the focus on the point-null hypothesis is a bit misleading. If false positives were defined as a 

region of population effect sizes close to zero, the percentage of false positives would increase. 

Thus, we believe that discovery rates and replication rates are ultimately more meaningful than 

the false discovery rate, especially if it is defined in terms of population effect sizes that are 

exactly zero. 

Conclusion 

To summarize, given the widespread practice to select results for statistical significance, 

statistical significance does not provide information about the replicability of published results. 

Z-curve was developed to provide this information based on the actual test-statistics published in 

journals. We show that z-curve 2.0 performs well across a wide range of realistic scenarios and 

we provide valid bootstrapped confidence intervals, however, we caution against the usage of p-

curve due to its suboptimal performance. We also validated an estimate of the expected discovery 

rate that can be used to assess the presence of publication bias and to estimate the maximum 

false discovery rate. We also created an R-package that makes it possible to conduct z-curve 
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analyses. We believe that z-curve is a promising method for estimating reproducibility of fields 

and journals and can provide evidence about the presence and extent of selection bias.  

 

Data Availability Statement 

Supplementary materials are accessible at https://osf.io/r6ewt/ and the R-package is accessible at 

https://cran.r-project.org/web/packages/zcurve/. 
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